Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Math Biol ; 88(2): 19, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245613

RESUMO

We consider populations with time-varying growth rates living in sinks. Each population, when isolated, would become extinct. Dispersal-induced growth (DIG) occurs when the populations are able to persist and grow exponentially when dispersal among the populations is present. We provide a mathematical analysis of this surprising phenomenon, in the context of a deterministic model with periodic variation of growth rates and non-symmetric migration which are assumed to be piecewise continuous. We also consider a stochastic model with random variation of growth rates and migration. This work extends existing results of the literature on the DIG effects obtained for periodic continuous growth rates and time independent symmetric migration.


Assuntos
Ecossistema , Crescimento Demográfico , Dinâmica Populacional , Modelos Biológicos
2.
Theor Popul Biol ; 154: 1-26, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37453615

RESUMO

We consider a population distributed between two habitats, in each of which it experiences a growth rate that switches periodically between two values, 1-ɛ>0 or -(1+ɛ)<0. We study the specific case where the growth rate is positive in one habitat and negative in the other one for the first half of the period, and conversely for the second half of the period, that we refer as the (±1) model. In the absence of migration, the population goes to 0 exponentially fast in each environment. In this paper, we show that, when the period is sufficiently large, a small dispersal between the two patches is able to produce a very high positive exponential growth rate for the whole population, a phenomena called inflation. We prove in particular that the threshold of the dispersal rate at which the inflation appears is exponentially small with the period. We show that inflation is robust to random perturbation, by considering a model where the values of the growth rate in each patch are switched at random times: we prove that inflation occurs for low switching rate and small dispersal. We also consider another stochastic model, where after each period of time T, the values of the growth rates in each patch is chosen randomly, independently from the other patch and from the past. Finally, we provide some extensions to more complicated models, especially epidemiological and density dependent models.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA